
Journal of Engineering Mathematics 25: 287-299, 1991. 
(~) 1991 Kluwer Academic Publishers. Printed in the Netherlands. 287 

On the derivation of first integrals for similarity solutions 

J A M E S  M. H I L L  and D E S M O N D  L. H I L L  1 
Department of Mathematics, The University of Wollongong, Wollongong, N.S.W. 2500, Australia; 
1present address, Department of Mathematics, University of Western Australia, Nedlands, Western Australia 

Received 1 June 1990; accepted 4 September 1990 

Abstract. In two recent papers the authors have obtained a number of first integrals for similarity solutions of 
nonlinear diffusion and of general high-order nonlinear evolution equations. Such integrals exist only for special 
parameter values and are obtained via integration of the ordinary differential equation, which results when the 
functional form of the solution is substituted into the governing partial differential equation. In this paper we show 
that these special parameter values also occur in a natural way when we utilize the first order partial differential 
equation instead of the explicit functional form and we ask under what conditions can a first integral with respect to 
either of the independent variables x or t be deduced. This simple procedure generates all previous results and 
presents the idea of similarity solutions in an entirely new light. That is, the significant features of similarity 
solutions for partial differential equations are not necessarily the explicit functional form and subsequent reduction 
to an ordinary differential equation but rather that the solutions sort are common to two partial differential 
equations. The process is illustrated with reference to an extensive number of examples including nonlinear 
diffusion, general diffusion equations containing a number of parameters and high-order nonlinear evolution 
equations. In addition a new exact solution for nonlinear diffusion is obtained which is illustrated graphically. 

1. Introduction 

T h e  basic idea of  any similarity solut ion is that  an assumed funct ional  fo rm of  the  solut ion 

enables  a part ial  differential  equa t ion  to be reduced  to an ord inary  differential  equa t ion  (or 
to  a part ial  differential  equa t ion  of  lower  order) .  In  two recent  papers  Hill [6] and Hill and 

Hill  [7] the au thors  have deduced  first integrals for  s tretching similarity solutions of  the 

non l inea r  diffusion equa t ion  and general ly for  a class of  h igh-order  nonl inear  evolu t ion  

equat ions .  T he  pu rpose  o f  this paper  is to present  an al ternat ive der ivat ion of  these first 
integrals  utilizing the first o rder  partial  differential  equa t ion  ra ther  than  the explicit 

funct ional  fo rm of  the similarity solution.  This approach  presents  similarity solutions in an 
ent i re ly new light and by equal  util ization of  bo th  the original  partial  differential  equa t ion  

and the  first o rde r  partial  differential  equa t ion  we are able to deduce  previous  integrals 
virtually immedia te ly  wi thout  reference  to the under ly ing  ord inary  differential  equat ion .  

We first summar ize  the results p resen ted  in [6] for  nonl inear  diffusion with power  law 
diffusivity and with govern ing  partial  differential  equa t ion ,  

( Orx c) O-t = Ox cm " (1.1) 

As  no t ed  in [6], this equa t ion  remains  invariant  unde r  the o n e - p a r a m e t e r  g roup  

xl  = e(*+l)~x, t~ = e2"t,  cl = e2*~/mc, (1.2) 

whe re  h deno tes  an arbi t rary  cons tant  and accordingly  admits  similarity solut ions o f  the fo rm 
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c (x ,  t) : xZ~/'~(1+a)qb(~), ~ = - -  
X1/(1 +A) 

t 1/2 (1.3) 

assuming that A # - 1 .  Now on substitution of (1.3) into the partial differential equation 
(1.1), it happens that the resulting second order nonlinear ordinary differential equation for 
tk(~) admits a first integral for the two values of A, namely 

- m  - m  
A - (m + 2~ ' A - (m + 1 - - - - ~  ' (1.4) 

which curiously enough turn out to be precisely the values of A applicable to the well known 
point source solution and the so-called dipole solution respectively (see [6]). In this paper we 
present a simple interpretation as to why these particular values of A exhibit a first integral 
and we do so making use of the first order partial differential equation 

Oc Oc 2A 
- c ,  ( 1 .5 )  (A + 1)x ~xx + 2 t  at m 

rather than the equivalent similarity functional form (1.3). 
It turns out that the values of A (1.4) are those which enable equation (2.1) to be 

integrated directly with respect to the independent variables x and t and these details are 
presented in the following section. In the subsequent section we show that the procedure is 
effective in producing other first integrals for nonlinear diffusion which are given in [6]. In 
Section 4 we demonstrate that the approach can also be used for general diffusion equations 
of the form 

OC 1 (9 f m n OC p OC ] 
o t  = X c x f 

(1.6) 

which includes an equation recently proposed by Grundy [3] as a model for rock blasting. 
Integrals for (1.6) with p zero have been derived in Hill [6] and various special solutions for 
l, m and n all zero have been recently given by the authors (Hill and Hill [5]). Integrals for 
other special cases of (1.6) can also be found in Atkinson and Jones [1]. In Section 5 recent 
results given in Hill and Hill [7] for high-order nonlinear evolution equations are deduced by 
the procedure described here. Finally in Section 6 we utilize this approach to derive a new 
exact solution for the nonlinear diffusion equation (1.1) valid for rn = 1, which is not 
included in the exact solutions given in Hill and Hill [4]. Finally in this section, we note the 
recent interesting article by King [8] relating to other exact solutions of the nonlinear 
diffusion equation. 

2. Al ternat ive  derivat ion of  integrals  for nonl inear  diffusion 

In this section we illustrate the process of deducing simple integrals with reference to the 
similarity solution (1.3) of the nonlinear diffusion equation (1.1). On eliminating Oc/Ot 

between (1.1) and (1.5) we obtain 

( A + I ) x  Oc 2A c + 2 t  0 (c m O_xC ) 
Ox m ~xx = O, (2.1) 



First integrals for similarity solutions 289 

and we ask the question: "Under what conditions can be integrate this equation with respect 
to the variable x?" Clearly if (A + 1) equals - 2 A / m ,  that is A is given by (1.4)1, then (2.1) 
becomes 

o { 2xc } 
0x (m +2)  +2tcm = 0 ,  (2.2) 

and therefore we have 

OC XC 
tcm Ox + (m + 2----~ = f l ( t )  ' (2.3) 

where f l ( t )  denotes a function of t only. If we now require (2.3) to be also invariant under 
(1.2) then we find that f l (q)=-f l ( t )  and therefore fl(t) is at most a constant Ca. On 
substituting the similarity from (1.3) into equation (2.3) we find that the resulting integral is 
precisely that in Hill [6] obtained via an integration of the second order nonlinear ordinary 
differential equation for ~b(~). 

Similarly, if we multiply (2.1) by x then the resulting equation can be integrated 
immediately with respect to x provided (A + 1) equals - A / m ,  in which case A is given by 
(1.4)2 and (2.1) becomes 

o{ x2c [ of cm+l]} 
Ox (m+- l )  + 2 t  xc m Ox (m + 1) = 0 (2.4) 

and therefore we have 

2 [ cm+l ] x c Oc 
(m + 1-------~ + 2t xc m = , Ox (mT] ) - J  f2(t) (2.5) 

where f2(t) denotes a function of t only. Again on requiring that (2.5) is also invariant under 
(1.2) we again deduce that f2(t) is at most a constant C 2 and substitution of (1.3) into (2.5) 
again yields precisely the integral given in Hill [6]. 

Alternatively, we may use the first order partial differential equation (1.5) to eliminate 
Oc/Ox from (1.1), thus 

Oc+ 2 O {tc'~ Oc g~cm+l I 
Ot ( A + I ~  Ox x Ot ~ = 0 ,  (2.6) 

and on this occasion we may ask the question: "Under what conditions can we integrate this 
equation with respect to the variable t?" In this case, if (m + 1) -1 equals - A / m ,  that is A is 
given by (1.4)2 then (2.6) becomes 

Ot c+2~xx = 0 ,  (2.7) 

and therefore we have 

c + 2 = g ( x ) ,  (2.8) 
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where g(x)  denotes a function of x only. If (2.8) is invariant under (1.2), we require that g(x)  
transforms like c and therefore  we have 

g(x  1 ) = e-2~J(m+')g(x), (2.9) 

f rom which we may deduce 

(m + 1)C 2 
g(x)  - : , (2.10) 

X 

where C 2 denotes a constant, and this integral coincides with that obtained from (2.5). 
Clearly, we have demonstrated that the integrals previously obtained via the ordinary 

differential equation for ~b(~) can also be deduced from much simpler considerations. In 
subsequent sections we show that this interpretation also holds for other  known first integrals 
and for general equations such as (1.6) it provides by far the simplest mechanism to deduce 
such results. 

3. Other  integrals  for nonl inear  d i f fus ion  

In this section we demonstrate that the process described in the previous section also applies 
to the other  integrals deduced in Hill [6]. First the nonlinear diffusion equation with 
exponential  diffusivity D(c)  = a e t~C, namely 

0c 0 { 
O t  = a  e , 

(3.1) 

where a and /3 are constants, remains invariant under the one-parameter  group of trans- 
formations 

e = e2~t 2e x I = x + - , t 1 , c~ = c -  - -  (3.2) 
3, / 3 '  

for arbitrary 3,. This means that the functional form of the solution is obtained by solving the 
first order  partial differential equation 

Oc 1 0 c  2 
2t -~  + - (3.3) 

3, Ox / 3 '  

and consequently,  as noted in [6], has the form 

e t~c = e -Z 'xo (w) ,  w = e W t  '/2 . (3.4) 

On eliminating Oc/Ot from (3.1) and (3.3) we obtain an equation which readily integrates 
with respect to x to yield 

_ Oc 2x  
c + 2 a t  e ec - + f ( t ) ,  (3.5) 
3, Ox /3 

which is also invariant under (3.2) provided that f ( t )  is constant and the value 2aYC1//3 
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yields precisely the integral given in [6]. (We note that equations (4.5) and (4.6) of [6] 
contain a minor typographical error, namely that the constant 13 should not occur in these 
equations.) Similarly, if we eliminate Oc/Ox  from (3.1) and (3.3) and perform an integration 
with respect to t then we may deduce 

c + 2 a t e ~  c ac 
7 3 x  = g ( x ) ,  (3.6) 

and invariance under (3.2) requires that the function g ( x )  satisfies 

2e 
g ( x l )  = g ( x )  137' (3.7) 

from which we may deduce g ' ( x ) = - 2 / 1 3  and therefore (3.6) coincides with the integral 
obtained via the integration with respect to x. We notice that on this occasion there appears 
to be only the one integral. 

Returning now to the nonlinear diffusion equation with power law diffusivity (1.1), as 
noted in [6] this equation has solutions 

c ( x ,  t) = xZ/m~b(~) , ~ ----- X e - ~ m ` / 2  , (3.8) 

for arbitrary a, which arises from invariance under the one-parameter group 

2 E  
X 1 = e ' x ,  t 1 = t + - -  , c 1 = e2~/mc (3.9) 

a m  

and the corresponding first order partial differential equation 

Oc 2 Oc 2 
x Ox + c .  (3.10) a m  3 t  m 

On eliminating a c / a t  between (1.1) and (3.10) we may deduce 

of : : ( 
- - - - - c + - - - -  c '~ = 0  ( 3 . 1 1 )  

x Ox m a m  a x  

which evidently integrates with respect to x when m = - 2  giving rise to the integral noted in 
Hill [6] and due originally to Grundy [2]. However, a new integral arises from (3A1) for 
m = - 1  after multiplying the equation by x. We may readily deduce 

2(x oc ) 
x2c  - - - l og  c =f ( t )  

a c T x  (3.12) 

and invariance under (3.9) requires that f ( t l )  = f ( t )  - 4e /a  and therefore f ( t )  = 2 t  + C 2 and 
altogether from (3.8) and (3.12) we have 

c ( x , t )  - ~ ( ~ )  ~t/z 
X2 , ~ = X e , (3.13) 

with the new first integral 

q ~ 2 { ( ~ b ' ~ 2 ~ b ) a  log~b+21og~}  = C 2 , (3.14) 

which although it can be simplified, appears not to admit a further integration. 
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Finally in this section, we show that the first integral and the new solution given in [6] for 
the nonlinear diffusion equation (1.1) with index m = - 4 / 3  also emerges from this proce- 
dure. As described in [6] the functional form of the similarity solution is 

1 ] x - x  I ~ (3.15) 
~b(~) x2)'+~] 3/2 ~ =  ~ x-x---"~2~ C(X, t) = [(x - X l ) l - t r ( X  - ' 

where x I and x 2 denote the two roots of the quadratic equation 

2 /xx + ( I + A ) x + K = 0 ,  

and o- denotes [(1 + A) 2 - 4/zK] -I/2. 
partial differential equation 

(3.16) 

This functional form arises by solving the first order 

Oc Oc 3 c(21xx + A), [/zx 2 + ( l + a ) x + K l ~ x x  + 2 t  0 - 7 = -  (3.17) 

where A, /z and K are constants arising in the one-parameter  group which leaves (1.1) with 
m = - 4 / 3  invariant. In [6] by utilization of the functional from (3.15), the second order 
ordinary differential equation for ~b(~) is shown to admit a first integral provided the 
constants A, ~ and K are such that 

(1 + A) 2 - 4/zK = 9 ,  (3.18) 

that is, provided ~r = -+1/3 and the two values of o- giving essentially the same solution. In 
order to see why these values of o- are significant we need the identity 

0 O"-X {(X -- x l ) l - ° ' (X  -- x2)l+° '}  3/2 = 3 (X -- Xl)(1-3ty)/2(X -- X2)(l+3co/e(2tzX + A), 
2/x 

(3.19) 

SO that (3.17) becomes on eliminating Oc/Ot by means of (1.1) with m = - 4 / 3 ,  

0 
o x  { [ ( x  - - 1 + 13'2c} 

2t { ac}  + --]& (X -- Xl)(1--3~r)/2(X -- X2) (1+3°')/2 OXO C-4/3 - -  = o .  ( 3 . 2 0 )  

This equation can be integrated with respect to x only if (x -x l )O-3~) /e(x  - x 2 )  (1+3~)/2 is at 
most a linear function of x, which is only the case when o-= --_1/3. When o-= 1/3 equation 
(3.20) becomes 

0 2t O {  Oc} 
--0X ((X -- Xl)(X -- X2)2C} "[- 7 (X -- X2) ~X C-4/3 ~XX = 0 ,  (3.21) 

which integrates to give 

2t 
(x - x , ) ( x  - x2)2c + 7 { ( x  - x2)c  -4'3 0---c-c + 3c -1/3} = f ( t )  , 

Ox 
(3.22) 

which using the global form of the one-parameter  group can be reconciled with the integral 
given in [6]. 



First integrals f o r  similarity solut ions 293 

4. Integrals for general nonlinear diffusion 

In this section we derive the integral (4.18) for the general equation (1.6) which contains 
four arbitrary constants l, m, n and p and includes a wide variety of different physical 
phenomena.  For example this equation includes nonlinear diffusion in cylindrical and 
spherical regions, nonhomogeneous diffusivity and also applies to the flow of a non- 
Newtonian fluid in a porous medium (see for example Hill and Hill [5]). However, we first 
consider the special case of (1.6) with the parameter p zero which admits two first integrals. 
Thus we consider 

a c  ,0{ ac} 
= x cmX" T x  , (4.1) 

which remains invariant under the one-parameter group 

x 1 = eC~+l)'x, t I = e2~t, c 1 = ea~c , (4.2) 

with the constant a given by 

2h (n + l ) (h  + 1) 
a = (4.3) 

m m 

Accordingly the similarity solution c(x,  t) satisfies the first order partial differential equation, 
thus 

c3c Oc 
(h  + 1)x ~x  + 2t - ~  = ac . (4.4) 

Now on eliminating a c / a t  between (4.1) and (4.4) we have 

I_I OC ax -t  2t O{ O_~x } 
x Ox ( A + I ~  c +  ( h + l )  ax crux" = 0 ,  (4.5) 

and the condition that (4.5) admits a simple integral with respect to x is simply 

1 - l = - a / ( h  + l ) ,  (4.6) 

in which case we obtain 

1-I 2t CmX n OC 
X C + (~  + 1---------) -~X = f ( t ) .  (4.7) 

From (4.2) and the condition (4.6) we may deduce that f ( t )  is at most a constant. 
Alternatively, if we use (4.4) to eliminate Oc/Ox from (4.1) then we have 

Oc + 2x  t o [ xn-l ( Oc m+l 
Ot ( h + l ~  Ox ( r e + l )  t Ot 

a(m + 1) )} 
2 c m+l = O, (4.8) 

which evidently admits an integration with respect to t provided 

1 =  - a ( m  + 1) /2 ,  (4.9) 
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in which case we have 

2tx t 0 
c + (a  + 1)(m + 1) O-x { x n - l c m + l }  = g(x) ,  (4.10) 

and from (4.2) and (4.9) we may deduce 

g(x) = Cx -2/(m+l)(A+l) , (4.11) 

where C denotes an arbitrary constant. It is not difficult to show that the above conditions on 
the constant a give rise to precisely the A values given in Hill [6] for which the similarity 
solution permits a first integral. 

It is instructive to show that the A value arising from (4.9) also arises as follows. In 
multiplying (4.5) by x N and requiring that the result is an exact differential with respect to x, 
then for the first terms we clearly require 

N + I - I = - a / (  A + I ) ,  (4.12) 

and integration by parts is effective for the final term provided N = 1 - n and (4.12) becomes 

2 -  (n + l) = - a / ( A  + 1),  (4.13) 

which turns out to yield the same A value as (4.9) with the integral coinciding with (4.10) and 
(4.11). 

For the more general equation (1.6) only the first of these approaches is effective. 
Equation (1.6) is invariant under the one-parameter group 

X I = e(X+l)~x , t I = e2~t, c l = eb~c , (4.14) 

with the constant b given by 

2A ( n + l - p ) ( A + l )  (4.15) 
b =  ( m + p )  ( m + p )  ' 

and from (1.6) and the appropriate first order partial differential equation we may deduce 

1-t Oc bx -I 2t O { O~x v O~x ) 
x Ox ( A + I )  c +  ( A + I )  O--x cmxn = 0 .  (4.16) 

The equation evidently permits an integration with respect to x provided 

1 - l = - b / ( A + l ) ,  (4.17) 

with first integral 

1--1 2tcmx n [ Oc p Oc 
x c + (A + 1-------~ Ox -~x - f ( t ) ,  (4.18) 

and because of (4.17), f ( t )  turns out to be at most a constant. Further from (4.15) and (4.17) 
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we find that the appropriate value of A is given by 

( l ( m + l ) + n - m + p ( l - 2 )  
a = \ m  ~ 2 - -  l ( m  + ~ ---n - p ( 1 - - - 2 ) / '  (4.19) 

which for p zero coincides with the value given in Hill [6], also arising from the above 
equations (4.3) and (4.6). 

5. Integrals for high-order nonlinear evolution equations 

In a recent paper [7] the authors have deduced integrals for similarity solutions of a general 
class of high-order nonlinear evolution equations represented by 

Oc ~ 0 j 
- -  - -  ,~j - -  ( c m O  ( 5 . 1 )  
Ot j= l  OX ] ' 

for certain real constants mj and o~j denote any real constants. In this section we show that 
the results derived in [7] can also be generated by the procedure described here. Following 
the notation used in [7], equation (5.1) admits similarity solutions of the form 

C(X,  t )  = x - S ~ b ( x / t q )  , (5.2) 

for real constants s and q provided that each m r is defined by 

mj = 1 + (q-1 - j ) / s ,  (5.3) 

which we assume to be the case for all j for which aj is non-zero. An appropriate 
one-parameter  group leaving (5.1) invariant is 

x 1 = e-~/Sx, t 1 = e-~/*qt, c 1 = e ' c ,  (5.4) 

with corresponding first order partial differential equation 

Oc t Oc 
x 7 x  + sc + - - -  = 0 .  ( 5 . 5 )  

q 0t 

The integrals derived in Hill and Hill [7] can be obtained by examination of the equation 
resulting from (5.1) and (5.5) by elimination of Oc/Ot. For example, suppose aj = 0 for 
j - = l , 2 , . . . , k - l ( k < n )  then we have 

0c t ~ OJ(cmJ) 
X-~X +sc+-q ~= aj OX/' =0,  (5.6) 

and on multiplication by x s- 1 we see that this equation can be integrated with respect to x for 
s = 1, 2 , . . ,  k because terms involved in the summation can be eventually integrated by 
repeated integration by parts provided s - 1 is zero or a positive integer and j - (s - 1) ~ 1 or 
in other words s much be less than or equal to each j. Thus integrals exist for multi-pole 
solutions with s = 1, 2 . . . . .  k and these results are detailed in [7]. 
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Here we merely illustrate the process with reference to the single term equation 

OC __ 0 3 
Ot Ox 3 ( c m ) ,  (5.7) 

which represents a nonlinear wave phenomena which is dominated by dispersion for which 
we have 

q = [3 + (m - 1)s] -~ . (5.8) 

From (5.5) and (5.7) we obtain 

Oc t 03 
x -~x + sc - q ax 3 (c m) , (5.9) 

which for s = 1 integrates immediately to give 

d 2 
xc - (m + 2)t  - -  ( c " )  = f l ( / )  (5.10) 

OX 2 

and we see from (5.4) that f l( t)  is at most a constant. On multiplication of (5.9) by x we may 
deduce the integral for s = 2, thus 

{ 02(C m ) 0(cm) ~ 
x Z c -  (2m + 1)t x ax:  ax J = f 2 ( t ) '  (5.11) 

and fe( t)  can be shown to be at most a constant. Similarly, on multiplying (5.9) by x 2 we can 
deduce by two integrations by parts the following integral valid for s = 3, namely 

x 3 c - 3 m t ( x  2 02(cm) 2X O(Cm) + 2Cm} =f3(t)  (5.12) 
Ox 2 Ox ' 

and again f3(t) turns out to be a constant. The integrals (5.10)-(5.12) can be shown to agree 
with those derived in [7] and we refer the reader to this paper for further details and for 
special exact solutions arising from the integrals for particular values of m. 

Finally in this section we may confirm that the last integral valid for s -- 3 also arises by a 
time integration as follows. We first write equation (5.7) in the form 

Oc + m cm_ 10C 
Ot Ox 2 ~x = 0 ,  (5.13) 

so that on eliminating ac /ax  by means of (5.5) we may deduce 

Ocot ql OX 219 2 { l (x  t o(cm)ot + s q m c m ) }  = 0  " (5.14) 

Clearly if s q m  is unity, in which case from (5.8) we have s = 3, equation (5.14) permits an 
integration with respect to time and we have 

c - 3mt  - -  = g(x)  (5.15) 
OX 2 
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and (5.4) with s = 3 implies that g(x)  = Cx -3 where C denotes an arbitrary constant. This 
integral evidently agrees with equation (5.12). 

6. N e w  exact  so lut ion for non l inear  d i f fus ion  wi th  m = 1 

In this section we derive a new exact solution for nonlinear diffusion not included in the 
special exact solutions given in [4]. The integral arising from (2.3) and applying to A = 
- m / ( m  + 2) becomes 

(/) m{/), 2q~m+t 2~b 
~: (m + 2)~ 2 + (m + 2) 2 - C1' (6.1) 

where the prime denotes differentiation with respect to ~ and the concentration in this case is 
given by 

x(m+2> ]2 
c(x,  t ) -  x , ~ = tl/------T-- (6.2) 

On making the change of variables 

= n q , ( n ) ,  n = (6.3) 

it is not difficult to show that equation (6.1) becomes 

~/m dtp ~7~b 
+ (m + 2---~ = C ,  (6.4) 

where the new constant C = (m + 2)Ct/2. It happens that for m = 1, this equation can be 
solved by the following successive substitutions, 

2 
O = V -  ~/ 6C d ~  

' r l (V )  - xIt(V) d E  ' V = ( 6 C 2 ) 1 / 3 p ,  (6.5) 

which give the Airy equation 

d2~ 
dP 2 pqt = O, (6.6) 

which has the solution 

.1,2 /2 ) ( 2 )  at/(p) = C1 P 11/3~5 p3/2 + I.-~2/9 1-1,3 g p3/2 , (6.7) 

where C~ and C~ denote arbitrary constants and 11/3 and 1_1/3 denote the usual modified 
Bessel functions. From the equation 

r / ( p ) -  (62C)1/3 d ~  
• (p) dp ' (6.8) 



298 J.M. Hill and D.L. Hill 

we may deduce 

11(p)=(62C)l/3{ lp + p l / 2  [1~/3(2 p3/2) + C'1'-1/3(2p3/2)]} 
C*l , 2  3 1 2 , , 1  , [I1/3(}P 3/2) + -1/31,3P )l 

(6.9) 

where the constant C* denotes C~/C~ and primes here denote differentiation with respect to 
the indicated argument.  

Thus, al together the general solution for m = 1, involving two arbitrary constants C and 
C* is given by 

c(x ,  t) = ¢(11) x tl/3 , 11 = ill3 , (6.10) 

where the function 4' and 11 have parametric representations in terms of the parameter  p as 
follows, namely 

O(P) = (6C2)'/3P 11(p)2 (6.11) 
6 ' 

and 11(p) is defined explicitly by equation (6.9). 
Figures 1 and 2 show concentration curves for two values of the constant C* and for 

C = 1/3 in both cases. In Fig. 1 the constant C* has the value infinity so that 11 is zero when 

1 . 5  

t l  i i  
' ,  . . . . . . . .  t=.125 
I q t'=l , 

- -  t -=-8  

1 . 0  

fl I 0 . 5  ,,~ 

5 . 0  l O . O  1 5 . 0  2 0 . 0  2 5  . 0  

X 

Fig. 1. Variation of concentration with position for three times, calculated from (6.9)-(6.11) with C* infinite and 
C= 1/3. 
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Fig. 2. Variation of concentration with position for three times, calculated from (6.9)-(6.11) with C * =  1 and 
C = 1 / 3 .  

p is zero and therefore c(0, t) vanishes for all time and accordingly there is a fixed boundary 
at the origin. For other values of C* giving a physically sensible concentration (that is, 
positive) there is a moving boundary that starts at the origin at time t = 0 and subsequently 
moves to the right and Fig. 2 shows this behaviour for C * =  1. Different values of the 
constant C produce very little variation in the concentration curves. There are certainly no 
qualitative changes and only small quantitative changes even when the constant C is 
negative. 
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